The University of Texas at Arlington

Lecture 14 Communication Peripherals

CSE 3442/5442 Embedded Systems 1

Based heavily on slides by Dr. Gergely Záruba and Dr. Roger Walker

Communication Peripherals

Serial vs. Parallel Communication

- Fewer connections
 - Cheaper
- Great for far distances
- Slower

- Many connections
 Expensive
- More points of failure
- Faster

Synchronous

- Sender and Receiver share a clock signal
- High data transfer rate
- "Blocks" of data at a time

Asynchronous

- Sender provides a sync signal to the Receiver before starting each transmission
 - No shared clock but must agree upon a data-rate
- Single bytes at a time
- Slower data transfer rate but more flexible

• Simplex Receiver Transmitter - one-way Transmitter Receiver • Half-Duplex Receiver Transmitter - one line Transmitter Receiver • Full-Duplex Receiver Transmitter - two lines

PIC Communication Peripherals (4 Modes)

MSSP: Master Synchronous Serial Port Module

- SPI: Serial Peripheral Interface
- I²C: Inter-Integrated Circuit
 - Full Master Mode
 - Multi-Master Mode
 - Slave Mode

USART: Universal Synchronous/Asynchronous Receiver/Transmitter Module

- ART: Asynchronous (full-duplex)
- SRT: Synchronous (half-duplex)
 - Master
 - Slave

- SPI is a sync. Data Exchange protocol
- As data is clocked out, new data is clocked in
 - A FULL duplex data transmission occurs for each SPI clock cycle (if desired)

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

11

FIGURE 15-2: SPI MASTER/SLAVE CONNECTION

15-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

15-2: SSPCON1: MSSP CONTROL REGISTER1 (SPI MODE)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |

- bit 7 WCOL: Write Collision Detect bit (Transmit mode only)
 - 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
 - $0 = No \ collision$
- bit 6 SSPOV: Receive Overflow Indicator bit
 - SPI Slave mode:
 - 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software).
 - 0 = No overflow
 - Note: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.
- bit 5 SSPEN: Synchronous Serial Port Enable bit
 - 1 = Enables serial port and configures SCK, SDO, SDI, and SS as serial port pins
 - 0 = Disables serial port and configures these pins as I/O port pins
 - Note: When enabled, these pins must be properly configured as input or output.
- bit 4 CKP: Clock Polarity Select bit
 - 1 = IDLE state for clock is a high level
 - 0 = IDLE state for clock is a low level
- bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits
 - 0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin
 - 0100 = SPI Slave mode, clock = SCK pin, SS pin control enabled
 - 0011 = SPI Master mode, clock = TMR2 output/2
 - 0010 = SPI Master mode, clock = Fosc/64
 - 0001 = SPI Master mode, clock = Fosc/16
 - 0000 = SPI Master mode, clock = Fosc/4

MSSP I²C Mode

The MSSP module in I²C mode fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware to determine a free bus (multi-master function). The MSSP module implements the Standard mode specifications, as well as 7-bit and 10-bit

- I²C is a sync. bi-directional protocol (2 lines)
 - "Acknowledge" System
 - Master-Slave relationships
 - Multi-Slave & Multi-Master
 - Share<u>d Bus</u>

The MSSP module has six registers for I²C operation. These are:

- MSSP Control Register1 (SSPCON1)
- MSSP Control Register2 (SSPCON2)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible
- MSSP Address Register (SSPADD)

- I²C has two signal levels (open drain)
 - Float HIGH (Logic 1)
 - Drive LOW (Logic 0)

Master **writing** to a Slave

Master **reading** from a Slave

MSSP

20

Master **reading** from a Slave (special cond.)

USART Async. Full-Duplex

USART: Async.

ransmitter

- **TXSTA**: Transmit Status and Control **TXREG**: data to be sent out
- RCSTA: Receive Status and Control
 - RCREG: where received data is put
- SPBRG: Serial Port Baud Rate Generator
 - define the data rate
- Instead of a shared clock, now the data itself is sent out at a settable rate, <u>BAUD Rate</u>

USART: Transmission TX Output Pin

FIGURE 16-1: USART TRANSMIT BLOCK DIAGRAM

USART: Reception RX Input Pin

FIGURE 16-4: USART RECEIVE BLOCK DIAGRAM

BAUD Rate in bps (bits per second)

TABLE 16-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = $Fosc/(4(X+1))$	N/A

Legend: X = value in SPBRG (0 to 255)

BAUD Rate Ex: F_{OSC} = 16 MHz Want 9,600 bps (Low Speed)

Desired Baud Rate	=	Fosc / $(64 (X + 1))$
Solving for X:		X = value in SPBRG (0 to 255)
Х	=	((Fosc / Desired Baud Rate) / 64) – 1
Х	=	((1600000 / 9600) / 64) – 1
Х	=	[25.042] = 25◀ SPBRG
Calculated Baud Rate	=	16000000 / (64 (25 + 1))
	=	9615
Error	=	(Calculated Baud Rate – Desired Baud Rate)
		Desired Baud Rate
	=	(9615 – 9600) / 9600
	=	0.16%

TABLE 16-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)	
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))	26
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	N/A	20

Legend: X = value in SPBRG (0 to 255)

BAUD Rate Mismatch

Common BAUD Rates (Low Speed)

TABLE 16-4:BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc =	c = 40 MHz SPBRG 33 M		MHz	IZ SPBRG		25 MHz		20 I	MHz	Hz SPBRG		
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-	
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-	
2.4	NA	-	-	2.40	-0.07	214	2.40	-0.15	162	2.40	+0.16	129	
9.6	9.62	+0.16	64	9.55	-0.54	53	9.53	-0.76	40	9.47	-1.36	32	
19.2	18.94	-1.36	32	19.10	-0.54	26	19.53	+1.73	19	19.53	+1.73	15	
76.8	78.13	+1.73	7	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3	
96	89.29	-6.99	6	103.13	+7.42	4	97.66	+1.73	3	104.17	+8.51	2	
300	312.50	+4.17	1	257.81	-14.06	1	NA	-	-	312.50	+4.17	0	
500	625	+25.00	0	NA	-	-	NA	-	-	NA	-	-	
HIGH	625	-	0	515.63	-	0	390.63	-	0	312.50	-	0	
LOW	2.44	-	255	2.01	-	255	1.53	-	255	1.22	-	255	

bit 2	BRGH: High Baud Rate Select bit
	Asynchronous mode:
	1 = High speed
	➡ 0 = Low speed
	Synchronous mode:
	Unused in this mode

Common BAUD Rates (High Speed)

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 40 MHz		SPBRG	33	VHz	SPBRG	25 MHz		SPBRG	20 MHz		SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	9.60	-0.07	214	9.59	-0.15	162	9.62	+0.16	129
19.2	19.23	+0.16	129	19.28	+0.39	106	19.30	+0.47	80	19.23	+0.16	64
76.8	75.76	-1.36	32	76.39	-0.54	26	78.13	+1.73	19	78.13	+1.73	15
96	96.15	+0.16	25	98.21	+2.31	20	97.66	+1.73	15	96.15	+0.16	12
300	312.50	+4.17	7	294.64	-1.79	6	312.50	+4.17	4	312.50	+4.17	3
500	500	0	4	515.63	+3.13	3	520.83	+4.17	2	416.67	-16.67	2
HIGH	2500	-	0	2062.50	-	0	1562.50	-	0	1250	-	0
LOW	9.77	-	255	8,06	-	255	6.10	-	255	4.88	-	255

bit 2	BRGH: High Baud Rate Select bit
	Asynchronous mode:
_	➡ 1 = High speed
	0 = Low speed
	Synchronous mode:
	Unused in this mode

16-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0				
	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D				
	bit 7	•	•					bit 0				
bit 7	CSRC: Clock Source Select bit											
	Asynchron	ous mode:										
	Don't care											
	Synchrono	Synchronous mode:										
	1 = Master	[,] mode (clock	generated ir	nternally from	BRG)							
	0 = Slave r	mode (clock f	rom external	source)								
bit 6	TX9 : 9-bit	Transmit Ena	ble bit									
	1 = Selects 9-bit transmission											
	0 = Selects	s 8-bit transm	ission									
bit 5	TXEN: Transmit Enable bit											
	1 = Transmit enabled											
	0 = Transmit disabled											
	Note:	SREN/CREN	l overrides T	XEN in SYN	C mode.							
bit 4	SYNC: US	ART Mode S	elect bit									
	1 = Synchronous mode											
	0 = Asynchronous mode											
bit 3	Unimplem	ented: Read	as '0'									
bit 2	BRGH: Hig	gh Baud Rate	Select bit									
	Asynchron	ous mode:										
	1 = High s	peed										
	0 = Low sp	beed										
	Synchrono	us mode:										
	Unused in	this mode										
bit 1	TRMT: Tra	nsmit Shift Re	egister Statu	s bit								
	1 = TSR er	mpty										
	0 = TSR fu	III										

bit 0 **TX9D:** 9th bit of Transmit Data Can be Address/Data bit or a parity bit.

16-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
	bit 7							bit 0
bit 7	SPEN: Ser 1 = Serial p 0 = Serial p	rial Port Enab port enabled (port disabled	le bit (configures f	RX/DT and T	X/CK pins a	s serial por	t pins)	
bit 6	RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception							
bit 5	SREN: Sin Asynchrom Don't care Synchrono 1 = Enable 0 = Disable This bit	gle Receive E ous mode: us mode - Ma s single recei es single rece t is cleared aff	Enable bit a <u>ster:</u> ve ive ter receptior	is complete	·.			
	<u>Synchrono</u> Don't care	us mode - Sla	ave:					
bit 4	CREN: Continuous Receive Enable bit							
	<u>Asynchron</u> 1 = Enable 0 = Disable	ous mode: es receiver es receiver						
	<u>Synchrono</u> 1 = Enable 0 = Disable	<u>us mode:</u> es continuous es continuous	receive unti receive	enable bit (CREN is clea	red (CREN	overrides	SREN)
bit 3	ADDEN: A	ddress Detec	t Enable bit					
	Asynchron 1 = Enable when F 0 = Disable	<u>ous mode 9-b</u> es address de RSR<8> is se es address de	bit (RX9 = 1) tection, enal t etection, all b	<u>:</u> ole interrupt oytes are rec	and load of t eived, and n	he receive inth bit can	buffer be used as	s parity bit
bit 2	FERR: Fra 1 = Framin 0 = No frar	ming Error bit ig error (can b ming error	t be updated b	y reading R	CREG regist	er and rece	eive next va	alid byte)
bit 1	OERR : Ov 1 = Overru 0 = No ove	errun Error bi in error (can b errun error	t be cleared by	/ clearing bit	CREN)			
bit 0	RX9D: 9th This can be	bit of Receive e Address/Da	ed Data ta bit or a pa	arity bit, and	must be calc	ulated by ι	ıser firmwa	re.

31

- $F_{osc} = 40 \text{ MHz}$
- find **X** = SPBRG (0-255)
- Desired BAUD Rate = 9600 bps
 - High Speed: BAUD = $\frac{F_{osc}}{4*4(X+1)}$

$$= \frac{F_{osc}}{16(X+1)}$$
$$= \frac{F_{osc}}{64(X+1)}$$

F

RX

ТΧ

GNE

Want to slow

down to 9600

RX • $F_{osc} = 40 \text{ MHz}$ ТΧ • find **X** = SPBRG (0-255) GND Desired BAUD Rate = 9600 bps F_{osc} F_{osc} - High Speed: BAUD = 4*4(X+1)16(X+1)F_{osc} F_{osc} - Low Speed: BAUD = 4*16(X+1)

- **F**_{osc} = **40 MHz**, find **X** = SPBRG (0-255)
- Desired BAUD Rate = 9600 bps

- High Speed: 9600 =
$$\frac{F_{osc}}{16(X+1)}$$
 \rightarrow X = $\frac{40MHz}{16*9600}$ - 1 = **259.417**

- Low Speed: 9600 =
$$\frac{F_{osc}}{64(X+1)}$$
 \rightarrow X = $\frac{40MHz}{64*9600}$ - 1 = **64.104**

- **F**_{osc} = **40 MHz**, find **X** = SPBRG (0-255)
- Desired BAUD Rate = 9600 bps

- Low Speed: 9600 =
$$\frac{F_{osc}}{64(X+1)}$$
 \rightarrow X = $\frac{40MHz}{64*9600}$ - 1 = **64.104**

• Select *Low Speed* and *SPBRG* = 64

TABLE 16-4:BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc = 40 MHz		^{IO MHz} SPBRG		MHz	SPBRG	25	SPB	
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	valı (decir
0.3	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	2.40	-0.07	214	2.40	-0.15	16
9.6	9.62	+0.16	64	9.55	-0.54	53	9. <mark>5</mark> 3	-0.76	40
19.2	18.94	-1.36	32	19.10	-0.54	26	19.53	+1.73	19

USART: Async. Steps (Polling Ex.)

Reception

TRISChits.RC7 = 1; //RX is INPUT SPBRG = 64; //Low Speed: 9,600 BAUD for Fosc = 40 MHz 3 TXSTAbits.SYNC = 0; //Async. Mode TXSTAbits.BRGH = 0; //Low Speed BAUD Rate 4 RCSTAbits.RX9 = 0; //8-bit Reception 5 RCSTAbits.SPEN = 1; //Serial Port ENABLED (RX and TX active) 6 RCSTAbits.CREN = 1; //Enable Continuous Receiver (turned ON) 7 8 while(PIR1bits.RCIF == 0); //Wait for incoming data 9 10 myVar = RCREG;//Reading RCREG clears RCIF flag

USART: Async. Steps (Polling Ex.)

Reception

1	TRISCbits.RC7 = 1;	//RX is INPUT							
2	SPBRG = $64;$	//Low Speed: 9,600 BAUD for Fosc = 40 MHz							
3	TXSTAbits.SYNC = 0;	//Async. Mode							
4	TXSTAbits.BRGH = 0;	//Low Speed BAUD Rate							
5	RCSTAbits.RX9 = $0;$	//8-bit Reception							
6	RCSTAbits.SPEN = 1;	//Serial Port ENABLED (RX and TX active)							
7	RCSTAbits.CREN = 1;	//Enable Continuous Receiver (turned ON)							
8									
9	while (PIR1bits.RCIF	== 0); //Wait for incoming data							
0	myVar = RCREG;	<pre>//Reading RCREG clears RCIF flag</pre>							

PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

- bit 5 RCIF: USART Receive Interrupt Flag bit
 - 1 = The USART receive buffer, RCREG, is full (cleared when RCREG is read) 37
 - 0 = The USART receive buffer is empty not full (not every bit has arrived yet)

USART: Reception

USART RECEIVE BLOCK DIAGRAM

USART: Async. Steps (Polling Ex.)

Transmission

TRISCbits.RC6 = 0; //TX is OUTPUT 16 17 SPBRG = 64; //Low Speed: 9,600 BAUD for Fosc = 40 MHz 18 TXSTAbits.SYNC = 0; //Async. Mode Typo TXSTAbits.BRGH = 0; //Low Speed BAUD Rate 19 TXSTAbits.TX9 = 0; RCSTAbits.RX9 = 0; //8-bit Reception 20 RCSTAbits.SPEN = 1; //Serial Port ENABLED (RX and TX active) 21 22 TXSTAbits.TXEN = 1; //Enable Transmitter (turned ON) 23 while(TXSTAbits.TRMT == 0); //Wait until possible previous 24 25 transmission is done //Send one 8-bit byte out 2.6 TXREG = 'P';

USART: Async. Steps (Polling Ex.)

Transmission

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0			
CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D			
oit 7							bit 0			
I	oit 1	TRMT : Transmit Shift Register Status bit 1 = TSR empty								
		$0 = \text{TSR full} \longrightarrow$ not empty (still has something in it)								

USART: Transmission

FIGURE 16-1: USART TRANSMIT BLOCK DIAGRAM

Additional Information

- SPI
 - <u>https://www.youtube.com/watch?v=9hMsNOwY5AQ</u>
 - https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
 - <u>http://ww1.microchip.com/downloads/en/devicedoc/spi.pdf</u>
 - <u>https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus</u>
- I2C
 - https://www.youtube.com/watch?v=fm13tle5wSc
 - <u>https://learn.sparkfun.com/tutorials/i2c</u>
 - <u>http://ww1.microchip.com/downloads/en/DeviceDoc/i2c.pdf</u>
 - <u>https://en.wikipedia.org/wiki/I%C2%B2C</u>
- USART Async.
 - <u>http://ww1.microchip.com/downloads/en/DeviceDoc/USART.pdf</u>